
Software Security Testing

Bhupender Kumar Saini(219100887)

Institute of Software Technology,
University of Koblenz and Landau, Koblenz, Germany

bksaini@uni-koblenz.de

Abstract. A lot of research has been done recently towards creating
effective approaches to increase the security testing scope and effective-
ness. Software security testing is a key aspect to ensure reliability, confi-
dence, and trust in software applications. Secure software can contribute
to the software quality and plays a vital role in reducing the risk of inten-
tional/unintentional cyber attacks or failures that can severely affect the
reputation of a software company and can lead to negative consequences.
This paper discusses the importance of security testing, challenges in
implementing testing techniques, and unique testing approaches in the
software development life cycle. With the day by day advancement of
technology, the frequency of cyber attacks are increasing and the nature
of cyber attacks are becoming more complex. This paper presents the
widely used testing techniques and also respective tools. Finally, a brief
explanation about the important prerequisite for designing effective secu-
rity test sequences and increasing testing scope in secure software testing:
mindset.

Keywords: Software Security · Security Testing · IT security · Secure
software Development · Security testing tools · Security testing tech-
niques

1 Motivation

With the evolution of technology, there is an increase in cyber-attacks which
results in data loss, threat to privacy, human life, etc. As per Symantec Internet
Security report 2019 1, one in ten URLs are malicious. Web attacks significantly
increased by 56%, 33% increase in Mobile ransomware attacks and also one in
36 mobile devices a high-risk app are installed, more attacks groups are forming
and on average 55 organization attacked by them.
As per Kaspersky Lab, an antivirus company report 2 states that 90% of busi-
nesses admitted a security incident. Additionally, 46% of businesses lost sensitive
data due to an internal or external security threat. Enterprises lose half a million

1 https://www-west.symantec.com/content/dam/symantec/docs/reports/

istr-24-2019-en.pdf
2 https://media.kaspersky.com/pdf/it-risks-survey-report-cost-of-security-breaches.

pdf



2 Software Security Testing

US dollars on average due to security breaches. However, quantifying only based
on monetary loss is not enough. Additionally, the top three most expensive types
of security breaches are third party failure, fraud by employees, and cyber es-
pionage. The top three IT security threats that lead to data loss are malware,
phishing attacks, and accidental leaks by the staff. The consequences of security
breaches are loss of access to business-critical information, damage to company
reputation, and temporary loss of ability. One should keep in mind that the cost
of a security breach is always comparably higher than the cost of protection.
As per Edgescan 2019 vulnerability report 3, 19% of all vulnerabilities were as-
sociated with (Layer 7) web applications, API’s, etc. and 81% were network
vulnerabilities. Security implementation has a much broader scope that has to
be introduced in every part of the process that could be monitoring access of
employees in the organization, emphasizing security awareness, or implementing
practices designed by security experts in the organization. In this paper, our
focus is only on one aspect: Software security. Software security defined as the
process to identify the security features of software implementation are consis-
tent with the design.
Most of the security breaches like exploiting known vulnerabilities and malware
are preventable, if the process follows security guidelines, plan accordingly, and
uses security techniques carefully. Introducing security activities into the SDLC,
DevSecOps, patch management, continuous vulnerability management, and con-
tinuous asset profiling, can help in identifying weaknesses at an earlier phase.
In this paper, the security testing methods, techniques of security testing, and
mindset required for security testing is briefly explained.

2 Introduction to Software Security Testing

Nowadays, computers and software are significantly expanding and creating de-
pendencies in every aspect of life, which also enhances the possibility of unavoid-
able vulnerabilities which on later stage can be exploited by attackers as well as
increasing the risk of occurring on production. Therefore, introducing an efficient
way of security testing is one of the major concern for organization.
There are many definitions for the Software Security,

“Software Security is the software’s ability to highly resist, tolerate, and recover
from cases that strongly threaten the product.” - Julia Allen 4

“The primary purpose of engineering software that continues to function cor-
rectly and efficiently under several types of malicious attacks.” - G. McGraw [34]

“Software security is simply about the process of building secure software by

3 https://www.edgescan.com/wp-content/uploads/2019/02/

edgescan-Vulnerability-Stats-Report-2019.pdf
4 https://www.tandfonline.com/doi/full/10.1080/07366980701500734



Software Security Testing 3

designing software to be secure, emphasizing that the software is secure, and ed-
ucating software architects, developers, and users about how to build and use
secure things.” -G. McGraw [34]

According to Tian-Yang [40], Software security requirements mainly include data
confidentiality, integrity, availability, authentication, authorization, access con-
trol, audit, privacy protection, and security management. The main focus of the
software security testing is to reveal vulnerabilities in the software product or
the application which can be operating systems, software, database system, and
more. But, as a limitation software security testing can only reveal the presence
of vulnerabilities that should not be misunderstood as an absence of vulnerabil-
ities [14]. Anyway, it increases confidence in the product and reduce risk from
attacks or unexpected behavior which can cost money and reputation if discov-
ered at a later stage.
A very important and different perspective was presented by Arkin, Brad[1],
there is no relation between software security defects and vulnerabilities to se-
curity functionality — rather, they originate from an attacker’s unexpected but
intentional misuse of the application. Furthermore, if we characterize functional
testing as testing for positives—verifying feature how it should perform— then
security testing is in somewhat testing for negative test scenarios possibly driven
by abuse cases and architectural risks to simulate the behavior of a system under
attack. This arises the limitation, the scope of generative negative test scenar-
ios solely depends on the security tester imagination, expertise, and knowledge.
Insufficient planning and negligence in security testing can lead to unexpected
consequences:

– Software product with vulnerabilities, like poor encryption, unaddressed or
unprotected bugs will often impede general productivity and negatively im-
pact applications currently in production.

– Security flaws and breaches can lead to fines and sanctions for lack of regu-
latory compliance.

– Not addressing these issues before releasing a product, will eventually require
you to devote additional time and effort.

– You lose customers trust hence losing customers and profits.

– Software quality, reliability and security are tightly coupled[21].

2.1 Software Security Testing Terminologies

To completely understand the intention of this paper, basic background infor-
mation on security testing is required and definition of terms used in this paper
are as follows:

Defect is a variation or deviation from the original business requirements.

Fault is a condition that causes the software to fail to perform its required
function[16].



4 Software Security Testing

Bug is an error, flaw, failure, or fault in a computer program or system that
causes it to produce an incorrect or unexpected result, or to behave in unintended
ways5.
Vulnerability is a fault related to security properties. A vulnerability either
means that the security requirement is completely missing or implemented in
the wrong way[16].
Zero day Vulnerability is a vulnerability in a system or device that has been
disclosed but is not yet patched. An exploit that attacks a zero-day vulnerability
is called a zero-day exploit6.
Threat is the possible cause of an undesirable incident that could harm or
reduce the value of an asset. It can be hacker, malicious insider, compromised
employee [16].
Exploit is a specific actions/software/inputs that uses the vulnerability in the
system and causes the system to behave unintended7.
Confidentiality is the assurance that information is not disclosed to unautho-
rized individuals, processes, or devices[15].
Availability guarantees timely, reliable access to data and information services
for authorized users [15].
Integrity is provided when data is unchanged from its source and has not been
accidentally or maliciously modified, altered, or destroyed[15].
Non-repudiation is the assurance that none of the partners taking part in a
transaction can later deny having participated[15].
Authentication is a security measure designed to establish the validity of a
transmission, message, or originator, or a means of verifying an individual’s
authorization to receive specific categories of information[15].
Authorization provides access privileges granted to a user, program, or pro-
cess[15].

3 Scope And Challenges

To successfully develop secure software, responsible individuals should verify and
validate the security requirements as well as should gather information about
the known issues. Security requirements are taken as a foundation to derive and
execute tests against a system under test. Yet, these positive requirements by far
do not cover all the relevant security aspects[44]. Hence, in the event of security
testing, it is important that the negative requirements and cases derived from risk
analysis are incorporated. Additionally, one should follow an online community
like Open Web Application Security Project(OWASP) that caters with articles,
methodologies, documentation, tools, and technologies in the field of the web
application security to gain much-required information for security testing. The

5 https://steelkiwi.com/blog/is-there-such-a-thing-as-bug-free-software/
6 https://www.trendmicro.com/vinfo/us/security/definition/

zero-day-vulnerability
7 https://en.wikipedia.org/wiki/Exploit_(computer_security)



Software Security Testing 5

Common Weakness Enumeration (CWE) 8 provides a list of Most Dangerous
Software Errors. The SANS Top-25 list shows the most widespread and critical
errors that are applicable to all types of applications 9.Considering these details
during security testing is highly recommended.

3.1 Challenges in Security Testing

American security today website 10, provided brief overview of challenges faced
during Security testing are :

– Speed of Agile Development:
The dynamic and fast-paced nature of agile development encourages the
team to neglect issues to achieve project goals or meet the deadlines. Hence,
there is a high chance that security testing guidelines will be bypassed or
partially ignored.

– Risks of Using Open Source Components:
Using open-source components with no/little cognizance about internal in-
sight of the components may lead to vulnerabilities, unwanted complexity,
and inconsistencies in the overall product. Avoid the use of open source
components until it not possible to write the code. Using application vulner-
ability tools that perform Software Composition Analysis (SCA) can help
locating and tracking vulnerable components.

– Vulnerabilities in Code:
Securely developed applications still can be at risk due to be vulnerabil-
ities and weaknesses in programming languages. Every programming lan-
guage is prone to its own vulnerabilities and limitation which can be utilized
in attacking the application. For example, C programming language most
common vulnerabilities are buffer overflow error, format string vulnerability,
integer errors11. Increasing awareness regarding known issues of program-
ming languages can significantly minimize the security risks. In addition,
languages used in developing web or desktop application can create chal-
lenges in applying security policies[28].

– Lack of AppSec Planning:
Appsec defined as the process of securing all the software a business uses.
Lack of proper planning can lead to unmanageable security issues and unclear
expectations of the requirement for production-ready products which can
also lead the team towards ineffective methods.

– Lack of effective approaches to detect when data is encrypted:
According to Kirubakaran [31], Software application using encrypted data
communication like HTTPS makes traffic analysis impossible. Monitoring
only sensitive data can be useful as it is the main target of the attacks.

8 https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
9 https://www.sans.org/top25-software-errors

10 https://americansecuritytoday.com/secure-software-development-challenges-and-considerations/
11 https://medium.com/hackernoon/top-5-vulnerable-programming-languages-eab3144d6db7



6 Software Security Testing

3.2 Requirements for Security Testing

In a paper presented by Firesmith, Donald [18] about security requirement has
explicated the requirements worth remembering in the era of virus alerts, ma-
licious crackers, and the risk of cyber terrorism based on objectives of security
requirements are :

1. Identification Requirements
Ensuring users and client application identities identified and verified.

2. Authentication Requirements
Ensure that application users are actually who or what they claim to be and
thereby to avoid compromising security to an impostor.

3. Authorization Requirements
Ensuring that users and client applications can only access data and services
they are authorized for.

4. Immunity Requirements
Ensuring that prevention from the malicious attacks do infect the applica-
tion.

5. Integrity Requirements
Ensuring prevention from intentional corruption of data.

6. Intrusion Detection Requirements
Ensure an application or component shall detect and record attempted access
or modification by unauthorized individuals.

7. Non-repudiation Requirements
Ensuring user, component, or application should not deny having partici-
pated in interactions afterward.

8. Privacy Requirements
Ensuring confidentiality and data are kept private.

9. Security Auditing Requirements
Timely basis independent audit of the security mechanism and status.

10. Survivability Requirements
Ensuring applications survive attack, possibly resilient towards attack.

11. Physical Protection Requirements
Ensuring that the company and its assets are protected against terrorism
attacks, damage, theft, sabotage, etc.

12. System Maintenance Security Requirements
Ensuring system maintenance does not unintentionally disrupt the security
mechanisms of the application or component.

4 Security Testing in the Secure Software Development
Life cycle

It is well known accepted fact that the cost of fixing bugs and security vulnera-
bility increases as we move right in the software development life cycle [37]. In
other words, the cost of fixing issues will be higher in the later stages. Hence,
security testing techniques should be applied as early as possible in a secure



Software Security Testing 7

software development life-cycle. A secure software development life cycle takes
security aspects into account in each phase of software development [16]. Bach-
mann et. al.[3] described how security testing can be performed during Secure
SDLC:

– During Planning and Design Phase
In this phase, using static approaches like security review of the architecture
and threat modeling security testing methods are one of the most crucial
methods which help in selecting tools and techniques for testing in later
stage :

• Architecture Security Reviews is the manual review of the product archi-
tecture which ensures fulfillment of the security requirement. Detecting
architectural flaws at the early stage result in saving cost and effort as
a benefit.

• Threat modeling is a structured manual analysis of an application-specific
business case or user scenarios[3]. This analysis is guided by a set of pre-
compiled security threats. With the identification of threats, their impact
and potential countermeasures specific to the development of the soft-
ware product can be introduced. These methods help in identifying the
attack surface and the most critical components. This provides what to
focus on during security testing activities.

– During Software development
In the development stages, the following techniques are applicable:

• With the help of Static Source Code Analysis (SAST) and Manual Code
Review of the application source code for finding vulnerabilities that
help in detecting insecure programming, outdated libraries, and config-
urations which is one of the challenges discussed in the earlier section.

• In Static Binary Code Analysis and Manual Binary Review, analysis
of the compiled application (binary) for finding vulnerabilities without
actually executing the application.

– During Executable in test environment
Various techniques like penetration testing(Manual or Automated), Vulner-
ability scanners test, fuzz testing, and many more which is explained in
section 5 should be performed. However, these dynamic techniques usually
achieve lower coverage than static approaches and mainly focused on detect-
ing vulnerabilities related to data flows across the system and already known
vulnerabilities.

– During Maintenance and operation
Ensuring that software configurations are still secure and accidental viola-
tions related to authorization or authentication has not occurred. In addition
to that, passive security testing techniques like intrusion detection system
or monitoring system can be utilized to observe the behavior of the software
and, thus, highly recommended practice. Additionally, during this stage, rig-
orous security testing of updates and patches is performed and ensuring that
new vulnerabilities should not arise as a side affects.



8 Software Security Testing

4.1 Four Quadrants of Agile Testing

Recently, Agile testing approach has gained a lot of attention and being adopted
in the software Industry. Agile testing involves immediate and continuous test-
ing of all changes and updating test cases to run a regression test to verify
that changes have not broken existing functionality[13]. In agile software devel-
opment, the primary focus is on feature implementation and delivering value
to the customer. As a drawback, non-functional aspects like security of system
often neglected because of time pressure, cost, and awareness. Crispin and Gre-
gory [12] discuss the Agile Testing quadrants, which are widely acknowledged in
practice. Each quadrants in figure 1 reflects different reasons to test.

Fig. 1. Four Quadrants of Agile Testing(Adopted from [12])

Software companies somewhat focus on the right-hand side i.e Q3 and Q4,
and doesn’t play enough in supporting the left side i.e. Q1 and Q2 [13]. In agile
testing, due to continuous interaction with developers and customers extend the
contribution of the testers from only identifying the vulnerability to prevention.
Due to time constraints in agile testing, Automation is an important savior for
agile testing [13]. Introducing test automation in Q1 is usually easiest to imple-
ment, and has a big impact on the process effectiveness. Tests in Q3 are usually
performed manually. In Q4, the main scope is testing non-functional aspect and
heavily dependent on testing tools which require specialized skill sets and ex-
pertise in the product domain. But, exploratory testing by security experts is
highly recommended as it increases the test coverage and can reveal vulnerability
missed by automation tools. Authorization is often the only aspect of security



Software Security Testing 9

testing that the agile teams consider as part of business functionality [13].
There are other known software security methodology available, one most widely
known software security methodology is Microsoft’s framework, which is in-
tegrated into the Microsoft Agile Security Development Lifecycle. Other ap-
proaches like Baca et al.[2] demonstrated how security features can be inte-
grated into an agile software development method process at Ericsson AB. The
approach focuses on risk management.
Chólis et al.[11] describe a case study of a software security testing process based
on the Microsoft Software Development Life cycle for Agile. Major security de-
velopment processes followed by the organization are the Security Development
Lifecycle (SDL) [26] from Microsoft and the Open Software Assurance Maturity
Model (Open-SAMM)from OWASP 12.

5 Techniques of Security testing

Implementing security activities throughout the software development life cycle
requires different methodologies and techniques to successfully develop secure
software in the end. Security testing basically follows two types of approaches[24]:

1. Testing software to validate its functionality and mechanism checks.
2. Performing risk based approach according to attackers mindset.

Different types of testing techniques and risk assessment is described in this
section and but, not limited to only these techniques.

5.1 Penetration testing

In penetration testing, tester attempts to circumvent the security features of a
system based on their understanding of the system design and implementation
[24]. This technique is used to find security problems that are likely to originate
in the software’s architecture and design as this type of vulnerability overlooked
by other testing techniques[21]. Penetration testing mostly performed at the
later stage of the software testing life cycle once the software product is de-
veloped. There are automated tools like Nmap, Nessus, Metasploit, OpenVAs,
and Manual tools like OWASP Zed Attack Proxy (ZAP), w3af audit framework,
Wireshark available to perform such activities. Selecting a penetration testing
tool depends upon the type and feature of the software product. But using tools is
not enough to get secure software, instead, pen tester has to acquire the mindset
of the attackers and try to find out negative test scenarios as much as possible.
The main difference between traditional software testing and security testing
is software tester try to design positive test scenarios based on the functional
requirement specification which can be accessed easily from product artifacts.
On the other hand, designing negative test scenarios completely depends on the
tester expertise on the product domain and creativity. Tester with the help of

12 https://owasp.org/2020/02/11/SAMM-v2.html



10 Software Security Testing

his imagination try to abuse the same functional requirement for unexpected
purpose. Penetration Testing Execution Standard (PTES) provided by OSWAP
defines penetration testing as 7 phases 13.

1. Pre-engagement Interactions
2. Intelligence Gathering
3. Threat Modeling
4. Vulnerability Analysis
5. Exploitation
6. Post Exploitation
7. Reporting

Types of penetration testing include black-box, white-box, and grey-box. In
black-box penetration testing, the testers are given no knowledge of the appli-
cation. Unlike black-box, in white-box penetration complete information about
the application is available to the testers. Grey-box penetration testing, the most
commonly used, is where the tester is given the same privileges as a normal user
to simulate a malicious insider. Penetration testing should focus on aspects of
system behavior, interaction, and vulnerability that cannot be observed through
other tests [21]. Penetration testers should subject the system to sophisticated
multi-pattern attacks designed to trigger complex series of behaviors across sys-
tem components, including non-contiguous components, these are the types of
behaviors that cannot be forced and observed by any other testing technique.

5.2 Model based security testing

The basic idea of model-based security testing (MBST) is that instead of creat-
ing test cases manually, selected algorithms are generating them automatically
from a (set of) model(s) of the system under test or of its environment[38].
Model-based testing replaces manual test designs by automated test generation,
unlike test automation.
Mark R. Blackburn et al. [5] presented a paper on how model-based security
testing is different from the other three generations of the test automation con-
sidering model-based test automation as the fourth generation. In other paper,
Mark Blackburn and Ramaswamy Chandramouli [6] proposed a model-based
approach to automate security functional testing that involves developing mod-
els of security function specifications(SFS) as the basis for automatic test vector
and test driver generation.
Jan Jürjens [29] presented work towards systematic specification-based testing of
security-critical systems based on UMLsec. UMLsec is an extension to the Uni-
fied Modelling Language for integrating security-related information in UML
specifications [30]. He also showed how to systematically generate test sequences
from security properties based on the model that can be used to test the imple-
mentation for vulnerabilities.

13 http://www.penteststandard.org/index.php/Main_Page



Software Security Testing 11

Wimmel and Jürjens[42] proposed a specification-based testing for security-
critical systems, a specification based testing is where test sequences generated
from an abstract system specification to gain confidence in the correctness of
the implementation. And, they presented an approach where test sequences for
transaction systems from a formal security model supported by the CASE tool
Auto-Focus and those test sequences are determined for the system’s required
security properties, using mutations of the system specification and attack sce-
narios.
Tejeddine et al. [35], proposed a model-driven approach for specifying, deploying,
and testing security policies in Java applications. First, a security policy is spec-
ified independently of the underlying access control language (OrBAC, RBAC)
based on a generic security meta-model that can be used for early consistency
checks in the security policy. This model is then automatically transformed into
a security policy for the XACML platform and integrated into the application
using aspect-oriented programming. To qualify test cases that validate the se-
curity policy in the application and they inject faults into the policy. The fault
model and the fault injection process are defined at the meta-model level, mak-
ing the qualification process language-independent.
In another case, Matthias Büchler et al. [9] proposed a different approach of uti-
lizing model checkers and penetration testing for security testing to bridge the
gap between both. In the proposed idea, first they mutate the model to introduce
specific vulnerabilities present in web applications, this model check outputs at-
tack traces that exploit those vulnerabilities. Next, that attack traces converted
into test cases by using 2- step mapping. Finally, that tests are performed on real
software automatically. This prototype implemented and evaluated on Web Goat
provided by OWSAP. As a result, that prototype was successful in reproducing
Role-Based Access Control (RBAC) and Cross-Site Scripting (XSS) attacks.

5.3 Risk-Based Security Testing

According to I. Schieferdecker et al. [38], Risk-based testing introduces two dif-
ferent goals in mind. One, optimizing the overall test process by risk analysis
that provides guidance towards test identification and requirement engineering
that results in systematic information with a focus on threats and vulnerabili-
ties. Second, simulation of attack to find deviations of the software under test
that leads to vulnerabilities for example performing a denial-of-service attack.
Additionally, risk assessment introduces the notion of risk values, which esti-
mates the likelihood and consequences of certain threat scenarios. These risk
values enable the tester to weigh threat scenarios as well as prioritize them and
thus, helps in focusing on more relevant vulnerabilities. Risk analysis and risk as-
sessment, similar to other development activities are performed in early project
phases, are mainly based on assumptions on the system itself. But, testing with
the system enables us to gain empirical evidence on the presence of vulnerabili-
ties, applicability, quality.
In particular, risk-based testing can help in [38]

– providing evidence on the functional correctness of countermeasures,



12 Software Security Testing

– providing evidence on the absence of known vulnerabilities, and
– discovering unknown vulnerabilities,
– optimizing risk analysis by identifying new risk factors and reassessing the

risk values.

Risk-based approaches can be utilized in another way like risk-based test selec-
tion and risk control. Risk-based test selection is used to find an optimal set of
test cases along a certain selection strategy. Risk control deals with the revision of
risk assessment results by correcting assumptions on probabilities, consequences
or the maturity of treatments scenarios or deals with the compledtion of risk
analysis result by integrating vulnerabilities, potential threats, threat scenarios
and unwanted incidents.
Zech, Philipp [44], proposed a model-driven methodology for the security testing
of cloud environments, ingesting misuse cases, defined by negative requirements
derived from risk analysis.
Ming Ni [36] paper focused on speed enhancements techniques that offer clear
and meaningful ways to enhance human understanding and comprehension of
security levels.
Julien Botella [7] presented an approach based on a mixed modeling, the model
used for automatically generating test cases by capturing some behavioral as-
pects of the Web applications, which also includes vulnerability test purposes as
a feature to drive the test generation process.
Yan Li [32], proposed a conceptual framework which is based on the two possible
combinations of model-based security testing(MBST) and model-based security
risk analysis (MSR) called risk-driven model-based security testing (RMST) and
test-driven model-based security risk analysis (TMSR).
Ida Hogganvik [23], worked on developing a graphical approach to threat and
risk modeling that supports the security analysis process and approach is con-
tributing to solving three issues related to security analysis:

1. how to facilitate communication in a group consisting of people with different
backgrounds and competences?

2. how to estimate the likelihood and consequences of the risks?
3. how to document the security analysis in a comprehensible manner?

His approach incorporated the CORAS security risk modeling language. It is a
graph-based modeling approach that emphasizes the modeling of threat scenarios
and provides formalism to annotate the threat scenarios with probability values
and formalism to reason with these annotations.

5.4 Fuzz testing

Because of its effectiveness in discovering the vulnerability, fuzz testing has
gained a lot of attention. In Fuzz testing, injecting random data into a program
to test whether it can run normally under unexpected inputs. Fuzzy testing
would find flaws of tested software, which are difficult for the other logical test-
ing method[38]. Fuzzy testing is illogical, just creates clutter data and require



Software Security Testing 13

very less computational cost and time. Fuzz testing is mostly implemented by
a program or script that submits a combination of inputs to the software to
disclose how the software performs. Fuzzing might be characterized as a blind
fishing mission that hopes to uncover completely unsuspected problems in the
software. For example, suppose the tester intercepts the data that an application
reads from a file and replaces that data with random bytes. If the application
crashes, as a result, it may indicate that the application does not perform de-
manded checks on the data from that file but instead assumes that the file is in
the right format. As fuzzing is essentially functional testing, it can be conducted
in various steps during the overall development and testing process[21].
Patrice Godefroid [22] proposed a method to records an actual run of the pro-
gram under test on a well-formed input, symbolically evaluates the recorded
trace, and gathers constraints on inputs capturing how the program uses these.
The collected constraints are then negated one by one and solved with a con-
straint solver, producing new inputs that exercise different control paths in the
program. They have implemented this algorithm in SAGE (Scalable, Automated,
Guided Execution), a tool employing x86 instruction-level tracing and emulation
for white-box fuzzing of arbitrary file-reading Windows applications. As a result,
they have revealed MS07-017 ANI vulnerability, which was missed by extensive
black-box fuzzing and static analysis tools.
Petar Tsankov et al. [41] proposed a lightweight, yet effective, technique for fuzz
testing security protocols. They used a concrete implementation of the protocol
to generate valid inputs and mutate the inputs using a set of fuzzy operators. A
dynamic memory analysis tool monitors the execution as an oracle to detect the
vulnerabilities exposed by fuzz-testing. For encrypted messages, they provide the
fuzzer with the necessary keys and cryptography algorithms in order to properly
mutate encrypted messages.
The great advantage of fuzz testing is that the test design is extremely simple,
and free of preconceptions about system behavior 14 and Fuzzers work best for
discovering vulnerabilities that can be exploited by SQL injection, buffer over-
flow, denial of service (DOS), and cross-site scripting. On the other hand, fuzzer
has limitations it tries to find simple bugs and when we do black-box testing,
which increases the difficulty to evaluate the threatening/impact of the found
vulnerability (no debugging possibilities).

5.5 Code-Based Testing and Static Analysis

In Static Analysis, we analyze the code of the application without actually exe-
cuting it. It is a powerful tool that allows us to detect vulnerabilities in source
code. According to the security community, there is no alternate for actually
looking at the code for detecting vulnerabilities and many serious security weak-
nesses cannot be detected with any other procedure of analysis or testing. The
issues related to concurrency problems, time bombs, logic bombs, flawed busi-
ness logic, access control problems, and cryptography weaknesses as well as back

14 http://en.wikipedia.org/wiki/Fuzz_testing



14 Software Security Testing

doors, trojans, and other forms of malicious code can be exposed by source
code reviews. Code-based and Binary code analysis share similarities, hence not
discussing binary code analysis. Code reviews can be performed manually or
automated and are often called static code analysis (SCA) or Static Application
Security Testing (SAST). The main principle of static analysis are deducing,
data flow analysis, and constraint analysis [43].
Ben Breech and Lori Pollock suggested a dynamic compiler-based security test-
ing framework [8], which could insert attack code into the running program and
test the security mechanism of the software. It is mainly used to test program-
based attacks, such as stack buffer overflow.
V. Benjamin Livshits and Monica S. Lam [33] proposed a static analysis tech-
nique for detecting many recently discovered application vulnerabilities such as
SQL injections, cross-site scripting, and HTTP splitting attacks. In their Java-
based system, user-provided specifications of vulnerabilities are automatically
translated into static analyzers and find all vulnerabilities matching a specifica-
tion in the statically analyzed code.
In Seung-Hyun Seoa and Aditi, Gupta [39] work, they have proposed a static
analyzer tool called DroidAnalyzer which identifies potential vulnerabilities of
Android apps and the presence of root exploit. Using this tool, they analyzed var-
ious mobile malware samples and targeting apps such as banking, flight tracking
and booking, home and office monitoring apps to examine potential vulnerabil-
ities.
Basic lexical analysis is the approach taken by early static analysis tools, in-
cluding ITS4, FlawFinder 15 and RATS 16, all of which preprocess and tokenize
source files (the same first steps a compiler would take) and then match the
resulting token stream against a library of vulnerable constructs.
Property-based testing is a special case of static analysis. Many errors in soft-
ware are caused by generalized flaws in the source code. Property-based testing
assures that a given program is free of specified generic flaws. Property-based
testing leverages property specifications and a data-flow analysis of the program
to guide the evaluation of test executions for correctness and completeness. Pa-
per [17] describes a method that transforms the security property of software into
specification described by TASPEC language. It would extract the code about
specific property by program slicing technology, and discover a violation of the
code against security property specification. Property-based testing focuses on
some specific security properties, which can meet the requirement of classifi-
cation and priority. The advantages of code review are completeness, catching
implementation bugs early, effectiveness, and Accuracy. Disadvantages are not
suitable for large code bases, requires highly skilled reviewers, labor-intensive,
and infeasible to detect run-time errors[21].

15 www.dwheeler.com/flawfinder/
16 www.securesoftware.com



Software Security Testing 15

5.6 Vulnerability Scanning

Application vulnerability scanners are a very important software security test-
ing technique to find software security risks, includes testing space scanning and
known defects scanning[21]. Testing space scanning deals with network port,
string, procedure data, network data, and other elements scanning, for example,
network port scanning can reveal issues related to vulnerable ports. Vulnerability
scanning tools scan application inputs and outputs to look for known vulnera-
bility signature in application-level software.
Common scanning tools include: Netsparker, Acunetix, and Retina CS Com-
munity with automation features and Security Profile Inspector (SPI), Internet
Security Scanner (ISS), Security Analysis Tool for Auditing Networks (SATAN),
Tiger, Sscan, Nmap, COPS, and Tripwire.
Jose Fonseca et al. [19] also proposed a method where they inject common types
of software fault and then evaluate and benchmark automatic web vulnerability
scanners and the results show a vulnerability scanner, in general, has low cover-
age and the percentage of false positives is very high. So, vulnerability scanner
cannot be blindly trusted.
Jeffrey W. Humphries et al. [27] proposed a customized vulnerability scanning
system using a secure mobile agent that is resistant to attack and also can quickly
look for newly published vulnerabilities. A mobile agent is simply a program that
represents a user in a computer network.
Now, websites are moving towards HTML5 but most of web application based
scanner cannot detect security vulnerabilities related to HTML5 hence HTML5
based issues become blind spots for scanner tools. Qianqian and Liu Xiangjun [4]
customized W3af(Web Application Attack and Audit Framework) and designed
a web application security scanner. This web application security scanner can
detect Click-jacking vulnerabilities brought by HTML5, but also provide efficient
Web application security scanning and evaluation services for the websites.
Jun Gao et al. [20] researched on the evolution of app vulnerabilities, they first
developed a lineage of an android app which represent a sequence of histori-
cal release of that app and based on those lineages they observed the evolution
vulnerabilities scanned by well-known scanner.

5.7 Tools for Security testing

Tools for Manual/Automation security testing techniques discussed in this paper
shown in table 1. Based on project requirements, technologies offered, support,
attack surface, and cost tools can be selected.
For instance, if someone wants to develop a secure web application, consider

using the OWASP risk assessment framework and verifying code using static
analysis tools like Synopsys Static Analysis (formerly Synopsys Coverity). Syn-
opsys static analysis tool offer plugin for IDE and helps users view the impact of
rule changes by displaying a comparison of results before and after the change
without requiring a new scan. The same tool gained the position of leader in
Gartner’s Magic Quadrant for its high-assurance, fast, and accurate analysis.



16 Software Security Testing

Table 1. Security testing tools for different techniques

Technique Tools

Penetration testing Netsparker ; Acunetix ; Indusface ; ImmuniWeb ; Owasp ; WireShark ; w3af ; Metaspoilt
; kali ; Aircrack ; ZAP ; Sqlmap ; Sqlninja ; BeEF ; Ettercap ; IBM Security AppScan ;
Websecurify ; Wapiti ; Kismet ;OpenSSL; snort ; THC Hydra ; John the Ripper ; CloudFlare
; Nmap ; Fiddler ; OSINT ; Ratproxy

Vulnerability scanning Abbey Scan ; Acunetix WVS ; AppScan on Cloud ; AppScan ; App Scanner ; AppSpider ;
AppTrana Website Security Scan ; Arachni ; AVDS ; BlueClosure BC Detect ; Burp Suite ;
edgescan ; Grabber ; Gravityscan ; Intruder ; Nessus ; Retina ; Wapiti ; Websecurify Suite
; Security Profile Inspector (SPI) ; Internet Security Scanner (ISS); Security Analysis Tool
for Auditing Networks (SATAN) ; Tiger ; Sscan ; Nmap ; COPS ; Tripwire

Fuzz testing JBroFuzz ; WSFuzzer ; american fuzzy lop ; Radamsa - a flock of fuzzers ; Microsoft
SDL MiniFuzz File Fuzzer ; Microsoft SDL Regex Fuzzer ; ABNF Fuzzer ; Codenomicon’s
product suite ; Spirent Avalanche NEXT ; Beyond Security’s beSTORM product ; Sulley
Fuzzing Framework

Code and Static analysis Synopsis ; CAST ; Bandit ; Brakeman ; Codesake Dawn ; Deep Dive ; FindBugs ; Find-
SecBugs ; Flawfinder ; GolangCI-Lint ; Google CodeSearchDiggity ; Graudit ; HCL AppScan
CodeSweep ; LGTM ; .NET Security Guard ; phpcs-security-audit ; PMD ; PreFast ; Prog-
pilot ; Puma Scan ; ShiftLeft Scan ; SonarQube ;VisualCodeGrepper (VCG) ; SourceGuard

Risk Based security testing OWASP Risk Assessment Framework ; RAF SAST Tool

Model checker BLAST ; CADP ; QComp ; PRISM-TUMheuristics ; DFTRES ; Storm ; Java Pathfinder ;
SPIN ; TAPAs ; ROMEO ; TLA+ Model Checker (TLC) ; NuSMV ; mCRL2 ; MRMC

For generating test cases automatically, techniques introduced by Jan Jürjens
[29] should be used. Using UWE(UML for web engineering) extended with secu-
rity properties for a web application like UMLSec and systematically generating
test sequences.
For penetration testing, usage of Nmap, ZAP, and Wireshark is highly recom-
mended with the Penetration Testing Execution Standard (PTES) because of
their analysis and vulnerability revealing capability. As a vulnerability scanner,
Nessus Professional is the widely used and industry standard for vulnerabil-
ity assessment. It helps professionals quickly identify and rectify vulnerabilities
including software flaws, missing patches, malware, and misconfiguration on var-
ious operating systems, devices, and applications. To reveal unknown vulnera-
bilities in application fuzz testing techniques must be included, either manual or
automated because it has the capability of revealing the most serious security
faults or defects. Tools like WebScrab should be introduced as it has a framework
developed on Java and designed for analyzing apps that are communicating via
HTTPS and HTTP protocols.

6 Selection Criteria for Security Testing Approach

For selecting a suitable security testing approach as well as a tool for a partic-
ular software application many aspects need to consider. Felderer, Michael and



Software Security Testing 17

Büchler [16] has briefly explained what one should consider as selection criteria
for security testing approach and tools:

– Attack surface: The Attack Surface is collection of all of the different points
where an attacker could get into a system and where they could get out 17.
Approaches discussed in this paper reveals different types of vulnerability
or points to get into a system. So, it is recommended to use various testing
approaches to increase test coverage and to find different types of security
flaws in software application.

– Application type: This is an obvious aspect that should always be con-
sidered as different security testing approach behave differently depends on
application type.

– Quality of results and usability: Before selecting any security testing
approach, the team should research about the effectiveness like false posi-
tive rate and usability aspect concerning the project. Then, choose the best
available approach for their application.

– Supported technologies: One should also consider the technologies used in
their project (programming languages, interfaces, etc.) that are compatible
with the approach.

– Performance and resource utilization: One should also consider the
available computing power and manpower in the project as different tools
and methods have different computational requirements.

– Costs for licenses, maintenance, and support: Tools in the market are
either available free or cost money. The team should consider the support
regarding the tool or other specific features like bug tracking is provided by
the tools team.

6.1 Mindset for Security testing

Most of the developers and tester believes that implementing/testing security
features is complete security testing. On the other hand, attackers think differ-
ently and always looking for loopholes, mainly introduced because of developers
incorrect belief or negligence. And, that mistake sometimes lead to zero-day
vulnerabilities. If mindset not changed then implementing any methodologies
or technologies will not be effective. So, software industries should motivate
security-related mindset in the project and also work towards providing training
related to that.
Hooshangi, Sara et al. [25] research on how security mindset makes better tester,
revealed that students who wrote good defense monitors also wrote good attack
tests. Furthermore, the student’s knowledge of security can influence the quality
of the programs and systems they develop [10].
Books like How to Break Software Security and Exploiting Software help educate
testing professionals on how to think like attackers. Some key aspect required
for security testing are :

17 https://cheatsheetseries.owasp.org/cheatsheets/Attack_Surface_Analysis_

Cheat_Sheet.html



18 Software Security Testing

1. Extensive knowledge of the domain.
2. Imagination helps in getting the idea of how certain things can work and

ineffective test case generation.
3. A hacker or attacker mindset results in developing impacting test cases and

cover all the creative ways an unauthorized attacker could exploit the appli-
cation.

7 Conclusion

This paper discusses the definition, scope, challenges, requirements, and tech-
niques of software security testing. The main focus of this paper is security
testing techniques used in different phases of the software development life cycle
with capability and limitation. As techniques, a brief overview of penetration
testing, vulnerability scanning, risk-based analysis, and static analysis is col-
lated with the different researches published on these techniques. Introducing
security practices from the initial stage of the project, designing security test
cases, selecting effective tools and techniques, and most importantly acquiring a
security mindset can motivate to build secured applications which can increase
the reliability and confidence in the product.
Information gathering is a crucial part of security testing. The team should col-
lect known vulnerabilities and consider into test sequences. Exhaustive security
testing is not possible, still, organizations have to concentrate equally or more on
the security aspect of the applications from the beginning of life cycle and should
adopt to systematic approaches/frameworks of security testing. To enhance the
security test coverage in a fast-paced development environment, making use of
various tools Wireshark, Nmap, and Webscrab, etc. will be very helpful in re-
vealing known or unknown vulnerabilities and the saved time can be invested in
generating some more abuse cases. As every tool is created to find different vul-
nerabilities as well as developed in different environments and languages which
makes automation hard to realize. Research on the complete package of tools
of all approaches is still open and which also focused on automation of security
testing. As technology evolving towards ubiquitous computing and semantic web
(mainly web-based application) which will be comparatively more complex and
the nature of cyber attacks will also going to be different and complex. Hence,
research on the security aspect of upcoming technologies demand more focus.

References

[1] Brad Arkin, Scott Stender, and Gary McGraw. “Software penetration test-
ing”. In: IEEE Security & Privacy 3.1 (2005), pp. 84–87.

[2] Dejan Baca et al. “A novel security-enhanced agile software development
process applied in an industrial setting”. In: 2015 10th International Con-
ference on Availability, Reliability and Security. IEEE. 2015, pp. 11–19.



Software Security Testing 19

[3] Ruediger Bachmann and Achim D Brucker. “Developing secure software: A
holistic approach to security testing”. In: Datenschutz und Datensicherheit
(DuD) 38 (2014), pp. 257–261.

[4] Jason Bau et al. “State of the art: Automated black-box web application
vulnerability testing”. In: 2010 IEEE Symposium on Security and Privacy.
IEEE. 2010, pp. 332–345.

[5] Mark Blackburn, Robert Busser, and Aaron Nauman. “Why model-based
test automation is different and what you should know to get started”. In:
International conference on practical software quality and testing. 2004,
pp. 212–232.

[6] Mark Blackburn et al. “Model-based approach to security test automa-
tion”. In: Proceeding of Quality Week 2001. 2001.

[7] Julien Botella et al. “Risk-based vulnerability testing using security test
patterns”. In: International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation. Springer. 2014, pp. 337–352.

[8] Ben Breech and Lori Pollock. “A framework for testing security mecha-
nisms for program-based attacks”. In: ACM SIGSOFT Software Engineer-
ing Notes 30.4 (2005), pp. 1–7.

[9] Matthias Büchler, Johan Oudinet, and Alexander Pretschner. “Semi-automatic
security testing of web applications from a secure model”. In: 2012 IEEE
Sixth International Conference on Software Security and Reliability. IEEE.
2012, pp. 253–262.

[10] Ingrid A Buckley, Janusz Zalewski, and Peter J Clarke. “Introducing a Cy-
bersecurity Mindset into Software Engineering Undergraduate Courses”.
In: INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCI-
ENCE AND APPLICATIONS 9.6 (2018), pp. 448–452.

[11] Jesús Chóliz, Julián Vilas, and José Moreira. “Independent security test-
ing on agile software development: a case study in a software company”.
In: 2015 10th International Conference on Availability, Reliability and Se-
curity. IEEE. 2015, pp. 522–531.

[12] Lisa Crispin and Janet Gregory. Agile testing: A practical guide for testers
and agile teams. Pearson Education, 2009.

[13] Daniela Soares Cruzes et al. “How is security testing done in agile teams?
a cross-case analysis of four software teams”. In: International Conference
on Agile Software Development. Springer, Cham. 2017, pp. 201–216.

[14] Srinivasan Desikan and Gopalaswamy Ramesh. Software testing: principles
and practice. Pearson Education India, 2006.

[15] Michael Felderer et al. “A classification for model-based security testing”.
In: Advances in System Testing and Validation Lifecycle (VALID 2011)
(2011), pp. 109–114.

[16] Michael Felderer et al. “Security testing: A survey”. In: Advances in Com-
puters. Vol. 101. Elsevier, 2016, pp. 1–51.

[17] George Fink and Matt Bishop. “Property-based testing: a new approach
to testing for assurance”. In: ACM SIGSOFT Software Engineering Notes
22.4 (1997), pp. 74–80.



20 Software Security Testing

[18] Donald Firesmith et al. “Engineering security requirements.” In: Journal
of object technology 2.1 (2003), pp. 53–68.

[19] Jose Fonseca, Marco Vieira, and Henrique Madeira. “Testing and compar-
ing web vulnerability scanning tools for SQL injection and XSS attacks”.
In: 13th Pacific Rim international symposium on dependable computing
(PRDC 2007). IEEE. 2007, pp. 365–372.

[20] Jun Gao et al. “Poster: On Vulnerability Evolution in Android Apps”. In:
2018 IEEE/ACM 40th International Conference on Software Engineering:
Companion (ICSE-Companion). IEEE. 2018, pp. 276–277.

[21] ASAM Al-Ghamdi. “A survey on software security testing techniques”. In:
Int J Comput Sci Telecommun 4 (2013), pp. 14–18.

[22] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. “Automated
Whitebox Fuzz Testing.” In: NDSS. Vol. 8. 2008, pp. 151–166.

[23] Ida Hogganvik. “A graphical approach to security risk analysis”. In: (2007).
[24] Itti Hooda and Rajender Singh Chhillar. “Software test process, testing

types and techniques”. In: International Journal of Computer Applications
111.13 (2015).

[25] Sara Hooshangi, Richard Weiss, and Justin Cappos. “Can the security
mindset make students better testers?” In: Proceedings of the 46th ACM
Technical Symposium on Computer Science Education. 2015, pp. 404–409.

[26] Michael Howard and Steve Lipner. The security development lifecycle.
Vol. 8. Microsoft Press Redmond, 2006.

[27] Jeffrey W Humphries, Curtis A Carver Jr, and Udo W Pooch. “Secure
mobile agents for network vulnerability scanning”. In: Proceedings of the
2000 IEEE Workshop on Information Assurance and Security. 2000, pp. 6–
7.

[28] Arunima Jaiswal, Gaurav Raj, and Dheerendra Singh. “Security Testing
of Web Applications: Issues and Challenges”. In: International journal of
computer applications 88.3 (2014).

[29] Jan Jürjens. “Model-based security testing using umlsec: A case study”.
In: Electronic Notes in Theoretical Computer Science 220.1 (2008), pp. 93–
104.

[30] Jan Jürjens. “UMLsec: Extending UML for secure systems development”.
In: International Conference on The Unified Modeling Language. Springer.
2002, pp. 412–425.

[31] B Kirubakaran and V Karthikeyani. “Mobile application testing—Challenges
and solution approach through automation”. In: 2013 International Con-
ference on Pattern Recognition, Informatics and Mobile Engineering. IEEE.
2013, pp. 79–84.

[32] Yan Li. “Conceptual framework for security testing, security risk analy-
sis and their combinations”. In: 9th Workshop on Systems Testing and
Validation (STV’12). 2012, pp. 17–21.

[33] V Benjamin Livshits and Monica S Lam. “Finding Security Vulnerabilities
in Java Applications with Static Analysis.” In: USENIX Security Sympo-
sium. Vol. 14. 2005, pp. 18–18.



Software Security Testing 21

[34] G. McGraw. “Software security”. In: IEEE Security Privacy 2.2 (2004),
pp. 80–83.

[35] Tejeddine Mouelhi et al. “A model-based framework for security policy
specification, deployment and testing”. In: International Conference on
Model Driven Engineering Languages and Systems. Springer. 2008, pp. 537–
552.

[36] Ming Ni et al. “Software implementation of online risk-based security as-
sessment”. In: IEEE transactions on power systems 18.3 (2003), pp. 1165–
1172.

[37] Ron Patton. Software testing. Pearson Education India, 2006.
[38] Ina Schieferdecker, Juergen Grossmann, and Martin Schneider. “Model-

based security testing”. In: arXiv preprint arXiv:1202.6118 (2012).
[39] Seung-Hyun Seo et al. “Detecting mobile malware threats to homeland

security through static analysis”. In: Journal of Network and Computer
Applications 38 (2014), pp. 43–53.

[40] Gu Tian-yang, Shi Yin-Sheng, and Fang You-yuan. “Research on software
security testing”. In: World Academy of science, engineering and Technol-
ogy 70 (2010), pp. 647–651.

[41] Petar Tsankov, Mohammad Torabi Dashti, and David Basin. “SECFUZZ:
Fuzz-testing security protocols”. In: 2012 7th International Workshop on
Automation of Software Test (AST). IEEE. 2012, pp. 1–7.

[42] Guido Wimmel and Jan Jürjens. “Specification-based test generation for
security-critical systems using mutations”. In: International Conference on
Formal Engineering Methods. Springer. 2002, pp. 471–482.

[43] Xia Yiming. “Security Vulnerability Detection Study Based on Static Anal-
ysis”. In: Computer Science 33.10 (2006), pp. 279–283.

[44] Philipp Zech. “Risk-based security testing in cloud computing environ-
ments”. In: 2011 Fourth IEEE International Conference on Software Test-
ing, Verification and Validation. IEEE. 2011, pp. 411–414.


